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1. INTRODUCTION

The design specifications for modern DoD systems include test and diagnostic requirements
for on-line and off-line detection of 100% of mission-critical faults. However, the definition
of mission-critical faults (i.e., faults that cause loss of life, property, and mission abort)
describes only the effect of their manifestation on system operation at the overall weapon
system level. For a system developer to comply with test and diagnostic requirements, 1t
is necessary to identify quantitatively the faults mn system operation, at different levels of
system hierarchy (i.e., component, board, module, subsystem), that can cause the effect
described by the “mission-critical fault” definition. Furthermore, the same capability is
required by the Government for auditing system developer compliance with requirements.
The identification of mission-critical faults in a quantitative manner will allow the system
designer to properly allocate test and diagnostic resources early in the design phase so that
a required maintenance approach can be effectively implemented. The capability of fault
injection, while the system is performing its operation, will allow the designer to evaluate
and demonstrate the effectiveness of system-level BIT and fault-tolerance features. These
capabilities do not exist today as part of a CAD environment, however, this project outlines
the requirements for such a system. These capabilities are very much needed by weapon
system developers who are using ad-hoc approaches to perform some of the cited functions

and resort to extensive, costly field testing to evaluate the effectiveness of BIT and fault-

tolerance features.

For a new tool development, it is important to consider possible interfaces to existing

tools that can be used synergistically to aid the designer in different aspects of the system

design process.

Tool development will be guided by user needs. Tool effectiveness in performing intended

functions will be evaluated using a real-life system as a benchmark. Close interaction between




the tool development team and a weapon system development team will guarantee relevance
of tool output in making decisions for the design of near-future systems. Furthermore, close
interaction with the end-user will insure an interface compatible with widely acceptable
design practices and standards. This, in turn, will facilitate the transfer of the developed

technology to weapon system developers.

1.1. Technical Rationale

Modern DoD electronic systems rely heavily on advanced technology to achieve mission ob-
jectives while maintaining high levels of availability and survivability. To accomplish these
features, the design specifications of these systems include stringent requirements addressing
fault tolerance, integrated diagnostics, and Built-In Test (BIT) capabilities. For example,
the requirements for continuous BIT in the INEWS system (i.e., an electronic warfare sys-
tem to be used by several aircraft) read: “C-BIT shall detect all mission-critical faults,
be non-interfering, have a false alarm rate less than 1%, enable reconfiguration, and report
mission-critical and non-mission-critical faults to the air crew via a resource manager. Faults
reported to the air crew shall be identified as being either mission-critical or non-critical”.
The major issues that have to be resolved before designing according to this specification

are the following:
1. Identification of mission-critical faults in a quantitative manner.

2. Test resource allocation for implementing BIT and fault tolerance for detection and

recovery of faults, system reconfiguration, and air crew reporting.

3. Evaluation of the capability of the BIT to perform its function at the level required by

the specification.

The objective of the work performed in this project was to develop a methodology

whereby mission-critical faults can be identified for a given application through the use




of simulation, and to define a CAD tool environment that can implement this methodology.

1.2. Motivation

A large number of techniques have been developed in the past for performing Failure Mode
Effects Analysis (FMEA). Traditional techniques initially developed are: the Tabular ap-
proach [1], the Matriz techniques [2,3] and the Bayesian approach [4,5]. The tabular tech-
nique is a “worksheet” approach which provides a simple inductive methodology, viable at
any design level. Supplementary techniques which are based on tabular FMEA output have
also been developed. These are the failure combination method [6] which explores the effects
of multiple, and externally induced failures, and the Hardware/Software interface analysis
(7).

The matrix technique provides a grided-plot format of the effects of failures in inputs,
outputs, connections, and pafts, at the lower level of the design. In this technique, the lower
levels of analysis propagate to the upper levels following a bottom-up approach. A more
advanced approach that is based on matrix techniques calculates probabilities of failures, in

addition to the failure effects. This technique was automated in [8,9].

The Bayesian FMEA is a statistical approach that lends itself to automation. The pri-
mary inputs of the Bayesian FMEA are a reliability table and a criticality table, which relate

what component(s) are likely to have failed given a system output failure.

Another major category of FMEA techniques is based on the fault-tree analysis [10,11].
In fault-tree analysis a specific undesirable system failure is deﬁned, and a fault-tree of lower-
level faults that caused the top-level failure is constructed using BRoolean algebra. Fault-tree
analysis is suitable for the analysis of fault-tolerant designs. Supplementary techniques based
on fault-trees include the Sneak Circuit Analysis [12,13], System Phase Modeling [14], and
the Event-Circuit Analysis [15].




Finally, the last class of existing FMEA methods includes techniques that consist of
a combination of the previously mentioned approaches. One example of these techniques
is the Tabular Systems Reliability Analysis [16] which combines aspects of tabular FMEA,
fault-tree analysis, and Markov chain theory. This technique is well suited for evaluation of
fault-tolerant distributed systems. Another example is the Integrated Critical Path Analysis
[17], which examines failures that are caused by hardware/software interfaces. This technique

combines aspects of tabular FMEA, fault-tree analysis, and sneak circuit analysis.

The existing FMEA methods can be divided into two major classes: The first class, which
includes the most of the traditional FMEA techniques (i.e., tabular, matrix, fault trees, etc.),
requires a significant involvement from a prospective user in terms of detailed knowledge of
the examined system and the effects of failures in all the system components. The second
class consists of the techniques that use analysis methods. These techniques require less
user involvement, but they are highly specialized and demand large amounts of computing

resources. Finally, the automation of such techniques is not considered to be feasible [18].

A common characteristic of all these techniques is their basis of analysis using first-order
dependencies, topological information for the system, and qualitative information about
failure modes. The detail involved in performing traditional FMEA techniques also causes
the analysis to be overly time-consuming and costly. Failure effects analyses also tend to
be unattractive from a user’s point of view because typically a human must systematically
categorize all the failure modes of the system. The analysis methods that are used to assess
systems which depend on software activity is a limiting factor for all these techniques. The
performance of these methods deteriorates even further when they are applied to complex
computer systems. Because of all these problems, the use of FMEA techniques has been

reduced to fulfilling contractual or quality assurance obligations [19].

In addition, the analysis of failure effects in preliminary design stages, where the system

architecture has not been finalized, requires a high-level functional approach. Automation




tools capable of performing this type of analysis do not exist at this time. Moreover, the
criticality of fault effects is mission dependent, but is not considered by any of the traditional

FMEA approaches.

The proposed project will develop a method for determining quantitatively the effect
of component failures to system operation by simulating the system architecture with the
application code. The criticality of the fault effects will be determined by comparing their
magnitude to user-specified thresholds defining mission-critical system operation margins.
The advantage of the proposed method is that it provides results that relate the criticality
of fault effects to a mission, thus allowing the user to design and evaluate system features

such as BIT and fault tolerance, based on their contribution to fulfilling system mission
requirements.

Finally, the automation of the proposed method with prototype CAD tools and their
interface with other existing tools will create a unique design environment where the user can
evaluate the performance, the testability, and the reconfigurability of a system, in addition

to the FMEA analysis.

1.3. Technical Approach
To meet the objectives of the program, the work can be described by the following tasks:

1. Develop an overall methodology for performing meaningful fault injection, simulation

of a system architecture, and identification of the faults which are deemed mission-

critical.

2. Develop a technique to inject faults within a system in a statistical manner which
adequately maps observed failure modes to faulty components. The user has the choice
of injecting particular faults, which occur based on an assumed probability distribution

function, and they can be injected at any interface between components.




3. Describe a methodology for comparing the response of the faulty system to the fault-
free case and determine the criticality of the error response based on user-supplied
specifications. Here the issue is the development of a framework for the user to specify

the criticality of faults and for a tool to use this specification in making decisions.

4. Develop methods for evaluating the effectiveness of Built-In Test schemes which have
been implemented within the overall design. This is the stage where a complete simu-

lation model is necessary so that a tool can evaluate a chosen BIT scheme.

5. Define a set of requirements for a proposed design tool set which can implement the
methodology steps described above. These tools are parts of an overall CAD framework
that uses the existing tools in the framework to implement some of the functions
outlined, and is pointed to wherever possible. There is a need to develop software to
implement parts of the methodology which find no implementation in form of existing

tools, and also for the interface between various tools.

The block diagram in Figure 1.1 outlines the approach used in this study:

This figure illustrates how the system designer may design a system using a system
component library based on VHDL code for different modules. After such a description is
completed, the designer can simulate the circuit until satisfied with the functionality. At this
stage the designer may have the first prototype model with possibly some BIST circuitry
included. The next step is to identify mission-critical faults, and to assess if the used BIST
circuitry is able to trap the identified mission-critical faults. This can be accomplished by
injecting faults in the circuit. The injected faults are a subset of all possible faults, and
are designed to identify the mission-critical faults. Once such faults have been identified, it
should be seen whether all such faults are being flagged off by the BIST circuitry. If not, the
BIST scheme needs to be refined or its placement needs to be modified. To aid in selecting

an appropriate subset of the total fault set failure rate, reliability data may be required, and
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a knowledge base for user-defined failure modes may be of great assistance.

After the VHDL simulation of the faulty circuit and the comparison of its responses

with those of the fault-free system, a criticality report can be prepared and used for further

analysis.

The steps followed in developing the technical approach depicted in the figure are the

following:

1.4.

Research available databases and the open literature to determine the current state-

of-the-art techniques for performing one or more of the tasks listed above.

Because of the emergence of VHDL as a standard method of describing the behav-
ior/structure of a digital design, the proposed approach should leverage the wide vari-

ety of CAE tools which have been implemented to support the use of VHDL.

Utilize a knowledge base concerning likely failure modes and their error manifestations
for each of the described VHDL entities. Failure rates for each entity should also be

provided from either external sources or best-guess estimates.

User-controlled statistical parameters based on various probabilistic distribution func-
tions can be utilized to govern the severeness and frequency of the failure injection

process.

Develop techniques to quantitatively evaluate the faulty simulation response with the

fault-free response based on user-supplied threshold characteristics.

Modeling

As emphasized above, a model for the system to be evaluated is needed for quantitative fault

model and effect analysis. The model should be expressed in VHDL, and certain attributes

should characterize the model as discussed below:




e There should be a general way for developing a model for most of the systems of interest
(i.e., the designer must be able to insert both design changes and BIT circuitry with

relative ease).

e The model should be hierarchical in nature so that the designer can check or modify
the design at any level. Figure 1.2 shows how a system (the largest rectangle) can
be visualized as consisting of several subsystems (smaller rectangles inside the largest
one). The system and each of the subsystems include certain attributes which help
describe the system better. Such attributes are shown by ellipses in the figure. This
model is especially true of VHDL descriptions of systems. This is because the VHDL
itself describes systems in a hierarchical manner. The entities can include other entities

in a hierarchical manner.

o Well-defined structure or quantized fields for ease in handling the data provided by the

user. This also helps the user convey requirements to the tool easily.

o Flexible in the sense that it can be used at any level of design abstraction, (i.e., at the

behavioral level, structural level, etc.).

1.5. About this Report

This report initially gives the reader a general idea of the functionality and the structure of
a proposed tool set for performing mission-critical failure effects analysis, with this chapter
as the introduction and the next chapter describing the general structure of the tool set and

how various tools fit together.

The individual modules of the tool set are then discussed in detail, including their func-
tion, emphasising how the decisions were made, and some alternative options which may be

functionally viable for the objectives of this project.
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After conceptually explaining each tool, the issue of implementation is addressed. Various
details; such as the interfacing tools and their requirements, the suggested tool set, and how

each fits in the general framework, are discussed.




2. A PROPOSED TOOL STRUCTURE

2.1. Tool Outline

The proposed tool consists of three parts as shown in Figure 2.1 These parts perform fault
generation and injection, criticality analysis and BIT evaluation, respectively. In Figure 2.2
the dependencies and dataflow have been deliberately omitted for the sake of brevity. The
emphasis is on clarifying the high-level concept of the tool function. The tool requirements

and structure can be summarized as follows:

Functional Requirements:

The input to the tool will be the VHDL model of the application system which the designer
is simulating. While simulating the application, the designer has certain specifications about
the system behavior which need to be met. This implies that the designer can define a certain
deviation of the system from the intended “normal” behavior, which may be considered
non-critical to the system mission. The tool is required to check the effect of failures on
the intended behavior of the system, and more specifically, if failures are mission-critical

according to the user specified criterion.

Inputs to the Tool:

From the requirements of this tool, it is simple to see that the user has to specify the
application code of the application to the tool. This code must be in VHDL, and the entities
used by the designer have some of the attributes which the designer must specify to aid the
tool in analyzing the criticality of failure (an example of these attributes can be whether the
component being modeled by the entity description in VHDL is synchronous or not). The
description of these attributes is deferred to the chapter describing the criticality tool.

Another set of inputs expected by the tool are the specifications of criticality. Through
these specifications, the designer specifies the tolerance levels of the system. These tolerance

levels are actually specified in terms of the outputs of the system. For example, the designer
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might specify that if a particular output (say x) differs from its fault-free expected value
by 10 percent, then the criticality is to be flagged. In effect, the designer specifies what is

considered to be mission-critical in terms of the quantitative effect of faults.

The third input (optional) is the reliability data of various components being used to
model the system. These data indicate the probability of failure of these components, and
can be especially helpful in the fault injection stage. If these data are not present, then equal

probability of failure is assumed for each component.

Output of the Tool:
The tool will identify all the mission-critical faults out of those faults which were selected
for simulation (this number can be arbitrarily large, limited only by simulation time and

available computing resources).

The tool will also check the efficacy of the BIT (Built-In test) approach being used by

the designer in terms of its capability in detecting mission-critical faults.

2.2. Tool Structure

First, a brief description of the structure of the tool components is given along with their

interactions.

2.2.1. Kernel

The tool has three individual components with a simple dataflow, so that each component
can be used alone. Despite this fact, there is a need for the central design manager which
can control the dataflow and act as an interface between the user (who is designing the
application) and the tool. This interface can be called the Kernel The kernel can be
thought of as the common database through which all the ug different tools can talk to each

other and with the user. Such a view is presented in Figure 2.2.

p- 14
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In this figure, two new elements are introduced. They are the VHDL library from which
the designer can choose components, and the other user specifications which may be used by
the kernel and/or tools. As an example, the user may want to specify whether the simulation
has to be carried out in the Max, Min or Typical mode. Other things which can be specified

by means of the kernel may be:

e Whether warnings are to be flagged.

e Should the attributes of the children be carried to the parent (i.e., inheriting attributes

from the components).

2.2.2. Fault Injector

Methodologies for determining, in a quantitative fashion, the effects of faults at different
levels of the system hierarchy, as far as mission requirements is concerned, are discussed
here. This will be achieved through a simulation approach whose applicability will depend
on the design level. Techniques that generate hardware failures in a statistical manner
and map these failures to the different levels of the system hierarchy are a part of thé total
methodology. The statistical properties of the failures and the mapping could vary depending
upon the application task and the operating environment of the system. The fault injector

will perform the following functions:

e Parse the input VHDL description of the design and create superentities from the

VHDL entities to do the fault injection with stuck-at fault model.

e Find which faults to simulate depending on user specifications and component relia-

bility data.

e Direct the simulation.




o Should be compatible with a fault simulator.

Dependencies of the Fault Injector: The tool function depends on the component
reliability database and on the statistical properties of the particular fault(s) the user wants

to simulate.

2.2.3. Criticality Detector

The function of the tool is to determine the criticality of the effects of the injected faults.
Based on simulation results, the quantitative effects of the faults on the system operation can
be compared to user-specifications indicating what is considered a critical operation margin.

This function of the tool will be performed using the following two steps:

e After getting inputs from the criticality specifications and the fault injector, the tool
compares the obtained output with the fault-free expected output. Criticality is de-
termined based on the error introduced by a fault versus an error margin that may be

acceptable to the user based on the criticality specification.

e If critical errors are detected, they are logged along with warnings which are issued for

potentially critical faults.

Dependencies of the Criticality Detector: The tool function depends on simulator

output, fault injector, and the user-specified criticality parameters.

2.2.4. Built-In Test Evaluation

Procedures for evaluating the effectiveness of BIT schemes when the system is executing

application code under faulty conditions.




e Define BIT counters at each of the BIT monitoring points. These counters keep count

of various mission-critical and potentially critical faults in the system.

e Define two global counters, one for critical faults and the other for non-critical faults.

o After the simulation, observe the values of BIT counters to see if all critical errors have

been detected.

After the simulation pass concludes (or upon first detection of the criticality of the fault),
the values in the error counters at the BIT monitoring points can be added to one of two
global counters for each location. These two global counters keep a cumulative tally of the
error counts for the faults deemed critical, and for those that are found to be non-critical.
After all of the target faults have been injected and simulated, the global counters can be
used to order the candidate BIT sites in terms of their efficiency in detecting the faults
deemed mission-critical. The non-critical faults have their own set of error counters which
may provide useful information to the designer about the testability of the design, and

provide feedback as to where he may want to put testpoints for non-BIT tests.

Dependencies of the BIST Evaluator: Depends on simulator output and output

from criticality detector.

2.2.5. Interactions:

The interactions are fully explored in the chapter on tool implementation. A description of

the files produced and used by each tool is given.




3. FAULT INJECTION

3.1. Objective

One of the most important components of the tool system described in Chapter 2 is the fault
injector, which may be based on fault injection techniqﬁes described in this section. The

objective of the fault injection is as follows:

Develops a technique that generates hardware failures in a statistical manner, and maps
these failures to the different levels of the system hierarchy. The statistical properties of
the failures and the mapping could vary depending upon the application task and operating

environment.

3.2. Proposed Fault Injection Mechanism

Based on the failure probability of a component (which can be computed from the MIL-
STD-217E data or estimated by the user), traditional FMEA techniques identify and analyze
failure effects using primarily a topological model of the system and first-order dependencies
among the components on the level of design hierarchy considered. We propose to extend
this approach and map it to our failure injector mechanism such that a simulation approach

can be utilized to determine the quantitative effect of the injected fault.

Whether or not the system is defined at a piece-part level of detail or at a higher level
of abstraction, the failure injection method must be applicable at all of these levels. Our
approach is to create a fault table for the VHDL-described system containing all of the
output ports of all entities used in the functional system. This table can be created by
parsing the VHDL description of the system and storing the output ports associated with
each individual entity within a table. These entries need to be classified according to the

signal type (e.g., whether they are single bits, multiple bit buses, integer representations




of buses, enumerated types, etc.) because in VHDL, description signals can be of different
types. The next problem is to choose an appropriate fault model. Although some work has
been done in defining higher-level fault models based on a VHDL behavioral description [81],
it will be difficult to apply these fault models in a consistent manner. Furthermore, these
models may be of questionable value for our purpose, although for test generation purposes
they may be acceptable. Thus, we propose that at this time, the fault models be limited to
the following:

o Pin stuck-at values

e Bus at wrong value

We propose that a weighting scheme be applied to the fault population in order to
prioritize the fault injection process for simulation and analysis. We have identified several
possible factors which can be assigned numerical quantities, and can thus be used as weights.
In the following discussion, the objective is to find the weight w; for each fault in the fault

population of the system. These weights are found as follows:

1. Failure rate A - The failure rate of a VHDL-described component can be used to
identify which components are the most likely to fail within the specified mission time.
These reliability data can be extracted from known piece-part reliability databases
such as those found in MIL-HDBK-217E, or any other known field data sources. These
databases associate a probability of failure with each component, say A;. The value X;
is available for each component in the system, and from these values a weighting factor
is obtained. This weighting factor is applied to all of the applicable failure modes for
the specified component (e.g., all failure modes associated with a 74181 ALU would be
weighted by the probability that this component wiHl fail in the overall system). The

actual weighting factor for the failure modes associated with component i is found as:




where 7 is the total number of components in the system model. Note that the failure
modes are the ways in which the specified component can fail, and thus correspond to
the potential faults. Qur concern is to find the likelihood of these failure modes. Also,
it is noteworthy that the ;s must be expressed in the same units. So after applying

this factor, all the failure modes of a specified component have the same weight, w;.

. Failure mode probability- Given that component i fails, some reliability databases
may contain a conditional probability based on the applicable failure modes of the
component. For example, if the 74181 ALU is selected for fault injection, then there
may be conditional probabilities assigned to its individual failure modes. As an exam-
ple, the probability that a failure in the ALU results from an error on the Cout pin
may be 0.1, while 90 percent of the observed failures for the ALU result from the 4-bit
output bus. Obviously such probabilities are of direct use to us. Assuming that for a
specified component the weight as found in the previous step (from the A;s) was w;.
Then if we also have the failure mode probabilities for it, say f;, the weight w; for this

mode is further modified, 1i.e.,
w; = w; * B;
Here w! is the new weight for the failure mode (or the fault). For the purpose of this

report we are interested only in stuck-at faults.

. Fanout of a signal may be weighted accordingly. If an output port of a component
fans out to more than one location, the effects of a failure on that output port are likely

to affect more than one destination port. Consequently, any faults injected on that




port will propagate to more than one unit and will be more likely to result in a critical
error (since the multiplicity of faults may occur). A rough guess for an appropriate
weighting factor would be a factor of two for every fanout point (i.e., if a signal has a

fanout of three, then the weight is 23-! = 4).

Observability - One factor which could be used as a negative weight would be the
observability of the outputs of a given component. This score shéuld be used only as a
small weighting factor. Its purpose would be merely-to give a higher priority to output
ports which are deeply embedded in a design where the fault effects might be difficult
to detect.

Control/datapath functions - A higher weighting factor may be desirable for control-
oriented and/or state machine functions rather than datapath-oriented faults. Because
the likelihood of the system being in an incorrect state when a critical processing cycle
is required is more critical than a small miscalculation in the datapath, a higher pri-
ority may be wanted for these function types. As a default, these are the faults which

might get the highest priority of all possible faults.

After creating the necessary weighting factors and applying them to the fault occurrence

sites,

an ordered list of these sites will be identified. Some of the properties of the fault

injection should be:

Faults can be injected based on user-defined triggering conditions.
Bus-transfer faults can be injected based on the functional difference fault model.
Interconnect-level faults can be modeled using stuck-at or stuck-opposite values.

Development of an error tracing mechanism would allow the error effects to be traced

through the system, thereby allowing for the identification of potential BIT locations




and the identification of equivalent faults which can be removed from the list of failure

modes.
Two types of error assumptions should be used to adequately model system failures:

1. Faults occurring in the interconnect between two or more components (or between a

primary I1/0O and a component)

9. Faults occurring within a design entity which may result in more than one error being

present at the entity’s output

Faults will be injected by modulating the output data being passed through the ports of

an entity and may be assumed to be permanent.

The system will first be simulated within the VHDL simulation environment in order
to determine the fault-free response of the system using the specified input vectors and/or
application code running on the system test data. Because we are interested in determining
the criticality of the system response, the simulation response for each output must be saved
for future comparison with the responses of the faulty system. Furthermore, because of the
BIT evaluation and recommendation facility, it will be necessary for the designer to identify
the candidate nodes for BIT resource allocation. This is because we will also need to save
the “fault-free” response at the monitoring nodes so that we can determine fault criticality
at these nodes during the fault-injected simulation runs. As is the case with the system
outputs, a signal trace mechanism needs to be used to store the simulation responses of the

BIT candidate nodes during the fault-free simulation pass.

Faults will be injected within the VHDL description of the system by defining a super-
entity which contains the original entity as an instance (Figure 3.1). The output ports of the
original entity will be Exclusive-ORed (see discussion below) with a MASK value generated
by the test bench (though described later, here it can be taken to mean that part of system
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which generates MASK values for fault injection). Several different scenarios could occur for

the fault injection:

1. The MASK value is permanently fixed (based on the fault model selected for injec-
tion) and is applied permanently to the super-entity (e.g., it is always enabled). For
permanent stuck-at type faults, the entity output and the fixed MASK value should
be OR’d for a stuck-at-1 or ANDed for a stuck-at-0 fault. This type of fault injection
can be used to model board or backplane interconnect faults where a constant signal

value may occur as a result of a fault.

2. If the particular fault occurs in a cone of logic which feeds an output port of an entity,
the failure is not always present. This can, again, be modeled using a fixed MASK
value which is exclusive ORed with the entity output whenever the maskENABLE
signal is set to one. Thus, we have the following behavior in VHDL for a fixed MASK

value

if (ENABLE == TRUE) then
Dout <= entity_out =~ MASK;
else

Dout <= entity_out;

The intermittent nature of this type of fault is defined by the probability density
function used for specifying the value of the ENABLE signal. Based on a user-defined
pdf (i.e., binomial, exponential, log-normal, etc.), a random deviate can be generated
from the pdf and be used to specify the value of the ENABLE signal. Thus, this will
cause specific failures to be injected within the simulation at times specified by the pdf

chosen beforehand.

3. The mask value is variable and is recomputed during each clock cycle of the system

simulation. As in Scenario 2, the injection of failures in this manner makes use of
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a probability density function. Based on the results of our experiments with various
combinational and sequential off-the-shelf components, the number of faults occurring
during a given simulation clock cycle have roughly a Poisson distribution. Most of
the time, the injected fault within a component is masked and does not produce an
error at the output. The next most frequent occurrence is for one error to occur on
the component output. From a user-specified pdf, we can generate a random deviate
during each clock cycle which can be used to specify the number of bit errors in an
output bus for the “bus at wrong value” fault model. The number of errors in a bus
must then be mapped to specific locations for each cycle. For example, suppose we
generate a random deviate to inject two bit errors into a 4-bit output bus. The errors
must be mapped to specific bits which can include any of the following cases (the
following are the mask values where 1 in a bit indicates that the error is to be injected

at that bit position),

If no information is available about the grouping of errors (which is probably the
nominal case), then a uniform distribution will be assumed, and each one of these six
cases will be equally likely to occur. However, if we can make use of information from
a co-variance matrix that is created when a gate-level fault injection of a component is
performed, then we may know beforehand that, say, bits 2 and 3 are likely to be faulted
together, whereby bits 0 and 1 are completely independent and are unlikely to both




be in error during the same clock cycle. However, in most cases, it is anticipated that
the functionality of the entity will be specified using either a behavioral or dataflow
description, and the structural information needed to determine the covariance of the

outputs will not be available.

In this scenario, the test bench must assume the responsibility of calculating the mask
value on the fly during simulation. An alternative approach would be to generate the

mask values and merge them with the incoming system data stimulus.

Upon injection of a fault, the simulator will be invoked with the output responses being
monitored and stored for later use in the cfiticality analysis phase. Furthermore, it is nec-
essary to keep track of the system responses at all of the candidate BIT locations that were
identified previously. If the system does not contain rollback or instruction retry (which
would cause the faulty simulation to be out of step with the fault-free simulation run) then
it may be possible to build in the BIT evaluation facility within the simulation run. A com-
parator can be generated for each of the candidate BIT monitoring points whose function is
to compare the value produced in the current clock cycle of the faulty simulation with the
same cycle of data extracted from the fault-free simulation. In this manner, the fault-free
data are essentially stored in an entity whose address is synchronized with the current clock
cycle. If the comparator flags a mismatch between the two data streams, then it can enable
a counter module which keeps a running total of the fault coverage at that location. The
comparator and counters can be automatically generated by the test bench based on the
number of bits in each monitoring point, their location, and the number of clock cycles that

will be simulated in each pass.

3.3. Some Experimental Results

In order to examine the validity of the fault model suggested, some experiments were carried

out. Several bus-structured MSI circuits were modeled at the gate level and subjected to
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exhaustive single stuck-at faults using a near-exhaustive set of vectors. The cumulative
distribution of errors at the device outputs, as well as the cumulative total of the number of
erroneous bits was collected. The results of such an experiment are depicted in Figures 3.2

and 3.3.

The results obtained suggest that in absence of any other information, the fault model
can be used in a statistical model to generate faults. The statistical parameters can be
varied, thereby leading to the error occurrence following a defined probability distribution
function. These faults can then be used to simulate the system. The implicit assumption in
this case is that the system cannot be exhaustively simulated, in general, due to computer
time constraints. From Figure 3.2 we see the number of bits that are erroneous follow the
classical Poisson distribution. Also the errors are uniformly distributed over the output bits
which are related (i.e., a single bus). Thus, bus-transfer errors can potentially be modeled

using statistical properties for error injection.

3.3.1. Statistical Models

As hinted, various models can be used to generate the faults for the proposed fault models,
namely stuck-at and bus-at wrong value. Hence, supported by the experiments performed
at RTI, there is reasonable evidence that it is better to generate errors following a statistical
model, than random error generation not adhering to some specific statistical process. To
this end, there is a need for the tool to provide a mechanism for incorporation of a statistical
process for fault generation. The processes which have been identified have the Poisson
and binomial distributions. One of these can be the default model. These two models are
considered to be of special importance because they seem to fit most of the experimental

data obtained during the course of this work.
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3.4. Benefits of the Proposed Approach
There are some distinct benefits from the proposed approach:

The sensitivity of the system to component failure modes can be determined quanti-

tatively.
e The approach is applicable to multiple levels of design abstraction.

e The approach provides some meaningful insight into error manifestation sites in the

system which can be used for the allocation of BIT resources to maximize their effec-

tiveness.

e The same methodology can be used to verify BIT effectiveness once BIT modules have

been added to the design.

e The effects of faults on a combined hardware/software model can be determined.

There are some issues, however, that need to be further investigated. For example, when
should error injection be initiated during a simulation run? This will need to be related
to the mission times of interest and/or the life-cycle of the system. Also a provision to

incorporate an alternative fault model needs to be provided as shown in Figure 3.4.

3.5. Test Bench Generator

All previous ideas can be used to make a comprehensive test bench generator. It is so called
because this tool is responsible for deciding which faults to simulate (i.e., which tests to run)
and also for generating the associated mask values. It will automate the generation of files
required to perform fault injection and simulation. The test bench is the top-level design unit

required to perform both of these functions in the proposed tool environment. Conceptually,




Accomodating Other Fault Models

Select Component
for Fault Injection

Failure Data-
base

Select Failure Mode

Substitute the component model
for the new one.

Use the mask if stuck-at fault
model is used.

Figure 3.4. User Specified Fault Model




the test bench is a software implemented breadboard. As with traditional breadboards, the
circuit components are wired together, the stimuli applied, and the responses are collected.
All of the flexibility of the traditional breadboard is present. In addition, as with the
case with fault injection, there is an additional facility of replacing components with their
faulty counterparts and seeing what effect the fault or faults have on the circuit on this
software implemented breadboard. The default model being “stuck-at-0 or 1,” the faults are

equivalent to tying the relevant nodes to ground or the supply voltage.

As stated previously, the test bench has two distinct functions, one of automatically
generating faults, and injecting these faults into the circuit by one of the methods which
have already been described. The fault list can be prioritized depending on the number of
constraints imposed by the user. The tool uses a prioritized list of faults out of which it
picks the specified number of faults for simulation. It injects these faults, simulates them
and finds whether they are critical or not. In case of lack of information on actual fault
weights, one could use a probability density function (pdf) of fault arrival to generate faults
in a statistical sense. With a user defined pdf (or default pdf if there is no user defined pdf),

the faults are injected one by one until the number of faults exceeds a user defined number.

There is clearly a need to separate the two functions of the test bench generator. This
is so because both fault injection and fault simulation can be done in several ways. By
separating these functions the user can have more choice to realize each of these functions
in the desired way. The first function of fault list selection and fault injection can be done
in several ways. An approach to performing these functions is described in the next section

of this report.

3.5.1. The Fault Selection and Injection Test Bench

The elements needed to configure the bench are as follows:
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The entity_name identifier provides a device name for the model. For example an
8-bit register might have an entity name of REGS8. This identifier is supplied by the

user during the program initialization.

The Fault Selector to be developed will parse all the entities for the input and the
output ports. With this information, the stuck-at model can be used to finalize the
fault list. Also after parsing, the output will be sent to a file called parse_output. This
file has a column for the signals, a column for the entity name the signal corresponds to,
and a column indicating whether the signal is input or output. The function of finding
the weights for the faults can be performed during this parsing pass. Based on our
previous discussion, there are certain weights which can be established by parsing the
VHDL description of the system. For example, take the case of the weight established
using fanout of a particular signal. This will be known from the VHDL description
which indicates how many times this signal is directly or indirectly assigned to some
other signal. Because of the available information, this task can be handled at compile
time. This special parsing pass is needed for developing a prioritized fault list and the

software for that has to be developed.

The output file for developing prioritized fault list of this process may have the format
of Table 3.1.

Table 3.1. Initial File Format for Fault List

Port_.name Port.type Entity Fault Weight

Cin IN ADDER | s-a-0 2
s-a-1 1.3

A IN MUL s-a-0 0.3
s-a-1 4.1




After the required information is extracted from the user-given system description,
there may be additional information available for the tool to use. As discussed previ-
ously, this information may be in the form of a reliability database for the components
which make up the system. Such information must be used to refine the fault weights
and, in this case, the output file from the previous stage can be used as input to this
process. This additional information is optional, and a fault list will be established
even without it. After processing this step, the output is again a file in the same format
as before, but with the modified entries in the weight column. At this point (assum-
ing that the user has already specified, through the kernel, his choice for faults to be
simulated), the fault selector can proceed to select faults from the file and present it
to the fault injector. For example, if the user specified only two faults to be simulated,

after selection the file may have the format of Table 3.2.

Table 3.2. Format for Fault List in Single Fault Mode

Fault No. Port.name Port_type Entity Fault
1 A IN MUL s-a-1
2 Cin IN ADDR | s-a-1

The Fault Injector is the test bench unit which controls the mask values, used for
the fault injection process. Depending on the input from the fault selector, the injector
injects the faults in the system by controlling the mask and enable values. Depending
on the mask scenario being used (i.e., one of the three described in section 3.2), the
fault selector injects a fault every simulation cycle and invokes the simulator. It should
also be possible for the user to inject several faults in a batch mode. The easiest way
to do that would be to point out whether the fault injector should run in the Single
Fault or the Multiple Fault mode. This can be enquired by the kernel, and if the user
selects the latter, the kernel should prompt the user to indicate which faults should be




considered. This can be done by showing the fault list to the user and allowing faults
to be selected together by clicking on them in a window. Continuing with our example,
if the user chose to consider both the faults simultaneously, the file available for fault

injection might be formatted as shown in Table 3.3.

Table 3.3. Format for Fault List in Multiple Fault Mode

Fault No. Port_name Port_type Entity Fault
1 A IN MUL s-a-1
Cin IN ADDR | s-al

o The test cases are the set of input combinations for which a designer might want to
test the design under consideration. The simulation time, or what is also referred as
simulation cycle in this report, depends on the number of test cases run. After this set
of inputs has been exercised, the tool will inject the next fault in the list, and so forth

until the chosen fault list is exhausted.

3.5.2. The Fault Simulation Bench

Under this section, the issues related to the simulation are taken up. With the typical test
cases and the fault from the fault injector, the simulation test bench runs the simulation.
It is possible that the user has only a few test cases for which he has already simulated the
system and stored the response of the system. Alternatively, the user may want to change
the test case for each simulation. Depending on which of these the user chooses, at the very
outset of fault injection the user must specify whether the system should do the simulation
for both the faulty and fault-free system in each simulation cycle or should just simulate
the faulty system and compare the response with the stored responses. Obviously, with the
stored responses there will be a saving in both time and effort. It also means that the user

loses the flexibility to change the simulation inputs in each simulation cycle. That is not a




very big constraint in most situations because the designer has knowledge of the test patterns

beforehand.

e The simulator is a VHDL simulator which can take the VHDL description (augmented
with superentities) and proceed with the simulation. A commercially-available VHDL
simulator can be used in this case. Before passing the circuit netlist to the simulator,
those I/O signals which are specified as stuck-at by the mask values must be suitably
modified.

o The good model output signals transfer the reference signals for the comparator
to compare against. As already explained, these are the outputs of the superentities
which the tool has constructed around the entities but no mask is applied, meaning
that their values come out unchanged. These signals can be bits or buses, but in both

cases the comparisons are performed at the bit level.

¢ The faulty model input-output signals are the results of the simulation with the
injected faults in the model and are the other input to the comparator. There can
be two modes of simulation: the faults can be injected one at a time, or as a group
where a parameter fault_number specifies the number of faults injected. A fault type
file would be created at runtime that would specify fault number and the type of fault

injected.

e The comparator output signals convey the result of individual comparison oper-
ations. These signals can be used to determine whether the injected fault is critical
or not. Criticality issues and how the comparison should be performed along certain

guidelines is elaborated upon in the next chapter.




4. CRITICALITY ANALYSIS

4.1. Determination of Fault-Effect Criticality

Upon fault injection and simulation, the comparison will be made between the outputs of
the faulty and the fault-free system under consideration. However, it is up to the user to
define a quantitative threshold for fault effects beyond which a fault is deemed to be a
mission-critical fault. Furthermore, the user will define when the comparisons take place
during the fault injection process (i.e., after every clock cycle during simulation, or at the
end of a simulation task). An assumption may be that the fault-free and faulty responses
are compared every simulation step, however, other requirements may be imposed according
to the system designer’s view of the system function. For example, if the design under
consideration is a FFT processor, the requirement may be to determine criticality based
on the amount of error introduced by an injected fault in the final output only and not
necessarily in intermediate results. This implies that the determination of criticality is made

at the time of the comparison of system response at times specified by the user.

Figure 4.1 shows the basic methodology which incorporates the various phases for per-
forming quantitative FMEA, including the criticality evaluation phase. It is assumed that
the system simulation is complete and results are available and stored before comparisons
are made to determine the criticality of an output. This is the default mode assumed for

any system.

The criticality evaluation phase occurs after the simulation. Its inputs are the criticality
specifications from the user and the simulation output from the simulation tool (fault-free

output and system output in presence of injected faults).
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4.2. Methods for Criticality Analysis

Traditionally, the methods used for criticality analysis have not used simulation and have
relied more on the usage of reliability models. These models require the user to define
the criticality threshold for a component, system, subsystem, or a failure mode. Then the
tool (using a database containing failure rates of components and failure modes) explores
the interactions among the components from a topological point of view. Its output is
traditionally described as the criticality number, and is indicative of the criticality of the
failure mode in question. The disadvantage of this approach is that the model uses a great
deal of data that are subjectively input by the user, and therefore the results are heavily

skewed by the subjective judgement of the user.

In the simulation approach, the user specifies the failure to be injected and also the
threshold for the criticality in terms of the quantity of error introduced by the injected
failure, and the tool decides whether the failure manifests itself as critical to the system
function. As described in the last chapter, the fault injection can be automated so that a
representative fault set can be input. In most cases, the designer may be assumed to have a

good idea of the types of faults that the system needs to be subjected to.

These two approaches are depicted in Figure 4.2. Also shown are the input requirements
for each method. The traditional FMEA concept requires the knowledge of failure rates of
various components (or VHDL entities in the simulation approach). The failure rates may
have to be associated.with a particular failure mode (i.e., for each type of failure of the
system, the probability of that failure needs to be known). Obviously, this can be difficult
for a large number of components. Still more difficult to know are the modification factors,
such as the environmental modification factor (K, discussed later in Section 4.6). Being
unable to determine these probabilities, the user might be forced to inject some probabilities

based on estimates that may not reflect the behavior of a component in a statistical sense.




In the simulation approach, a vehicle such as VHDL or any other structure specifying
tool is needed as a vehicle for simulation. The VHDL model is the preferred one for such a
tool, and this is the model which can be used to inject the faults and simulate the system.

What is meant by quantized user specification will be further elaborated below.

CRITICALITY ANALYSIS

FMEA — CONCEPT SIMULATION
eall URE BATES MODIFICATION FAGTORS
FAILURE MODES
GENERAL
SIMULATION MODEL
VEHICLE
(VHDL) QUANTIZED USER

SPECIFICATIONS

Figure 4.2. Criticality Analysis Methods

4.3. Quantized Specifications

The simulation of the system, including failures injected, produces results which have to
be compared to user-defined criticality thresholds to determine if the injected failures are

critical for the system mission. This comparison needs to be done with some guidelines




given by the user as to how the tool should determine whether a fault is critical or not.
A technique needs to be developed that gives maximum flexibility to the user regarding
how the criticality data may be specified. Criticality is manifested at the outputs of a
system, subsystem, or component. Also, the criticality specifications depend on the type
of system at hand. The term quantized specifications means that, with the help of system
attributes, the user can completely instruct the tool as to what constitutes criticality for a
given system mission. Figure 4.3 illustrates an example of attributes that may be used to

perform criticality analysis. The aims in defining these attributes will be:

e To unambiguously define the system operational characteristics and the way they may
affect the determination of criticality. The system characteristics to be considered may

be synchronous or asynchronous operation, inclusion of rollback capability, etc.

e Define how the the comparison of the fault-free and faulty system response will be
implemented. The comparison between the faulty response and the fault-free response
might be done per clock cycle or every nth clock cycle where n is specified by the user.
Another possibility is that the comparison is performed using the RMS value of the

output for a user-specified number of cycles.

e Capture the diversity in the specifications by the users. The presence of transients
and the like have to be incorporated as fields before being used to determine critical

behavior.

Before the criticality tool proceeds to determine the failure effects, it must account for
the type of components used in the system and the type of signals it is handling, in order
to produce meaningful results concerning the criticality of the injected failures according to

user requirements.
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4.4. System Attributes Needed for Performing Criticality Anal-
ysis

This section provides a discussion on some of the attributes which the criticality tool will
need before it proceeds with the analysis. Since the objective is to produce a tool that is
general, there are a lot of attributes to be considered to take as many systems as possible
in consideration. Normally all these attributes will not be needed and will be set to their

default values.

The concept to be considered first is that of sampling period. It is an important parameter
because this period determines where the comparison will take place between the normal
expected data and the data returned by the simulator under fault injection. It must be
noted, that this comparison determines whether the injected faults have been critical to the
system or not at the end of a specified sampling period. By default, this period will be set
to the clock cycle for synchronous systems, and at end-of-event simulations for asynchronous

ones.

Figure 4.4. Sampling Period Can Vary

o If TRANSIENTS (events that occur out of synchronization with the system clock to
which all other transitions are synchronized) are to be taken into account (i.e., if the

output can be critical due to the transients) then the sampling period may need to be




decreased by the specified amount. By specifying this attribute the user decreases the
sampling period to capture transients that may occur in short time intervals. Figure
4.4 shows how an otherwise smooth signal might have transients. On the right, the
sampling period is shown to be larger because the user expected the signal to be
smooth. On the other hand, if a transient was expected, the user might decrease the
sampling period (as on the right of the axis) to examine the system fault effect at the

time of the transient.

The system can have the default value of the sampling frequency, but only in the case
of SYNCHRONOUS systems. Otherwise the sampling frequency must be specified.
Even in the case of synchronous system sampling frequency may have to be specified.
One way to specify the sampling frequency, in the case of asynchronous systems, can be
to tie it with a particular output. For example, in a system implementing a handshake
protocol, the user might want the outputs to be compared when the acceptance from

the remote party arrives.

At the beginning of the process, the user could define which outputs need to be con-
sidered for criticality evaluation, and the aspects of how to measure criticality at a
given output. This provides the user the capability to consider internal system nodes

(in addition to input and output nodes) as well.

If the user is interested in examining an output taken singly or an output combination

(e.g., sum of two outputs), the COMBINATION OF OUTPUTS needs to be

specified.

Since an output might never be critical, or it might manifest itself as critical after a
long latency, or it might be known to be critical, a field to keep track of these three

possibilities is needed.

A field is also needed to indicate whether the system has ROLLBACK points, or




not. This attribute will help the faulty and fault-free simulation to stay in step. This
means that for systems that have a built-in, fault-checking mechanism; if the system
rollbacks upon detecting an injected fault, fault simulation will keep in step with the
rollback, and normal expected value and faulty values will be compared only if the
fault checking mechanism approves of the rollback values and the system is ready to
move to the next stage. Note here that a complete simulation model is assumed, which
gives the tool access to the flag which determines whether the system is to be rolled
back or not. This implies is that the tool has access to both the external system and

the internal system nodes.

e The user has to specify the TOLERANCE (i.e., margins of error) acceptable before
the output becomes critical. Here arises the issue of whether the user might be inter-
ested in the average value, per sample value, or the RMS value of the output to be

monitored. Depending on the user requirements, the tolerance needs to be appropri-

ately defined.

¢ The NORMAL value to be used as a basis for specifying the tolerance must also be

specified. Normally this is the value obtained from the fault-free simulation.

o Degree of criticality. There might be a need to warn the user of the effect of a
particular fault if it produces an error that is within a specified margin of the normal

value and to declare it critical if it exceeds that margin.

So we have a final picture of the needed attributes in Figure 4.5.

4.5. Attribute Association

An issue that needs to be addressed is how all these attributes are combined to form a
comprehensive database. Some of the attributes, such as the system being synchronous or

asynchronous, are derived from the system description. Other attributes, such as whether to
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consider the combination of outputs for criticality evaluation, can be neither associated with
any of the components, nor with the system. Others, such as tolerance, are associated with
individual signals. The degree of criticality is also associated with individual signals and it
seems reasonable to associate the system attributes with the signals itself. In this case, the
user may have to identify signal values of which the system will need to keep a record. These

are the signal values the system will trace through the simulation.

After marking out signals of interest, the user needs to attach to these signals the attribute
values that are characteristic of the system and the mission. Not doing so would lead to the

use of default values. These default values may be tabulated as shown in Table 4.1.

Table 4.1. Default Values for Signal Attributes

Attribute Default Value
Synchronous/Asynchronous  Synchronous
Sampling Period Global Clock Cycle
Combination of Output Individual Signals
Rollback Present NO
Degree of Criticality No Warnings

So the conclusion is that the attributes be attached with the signals. They can derive
the relevant attributes such as synchronous or asynchronous from the components, of which

they are a part.

4.6. How Simulation Output Can Contribute to Theoretical Eval-
uation

In the FMECA (Failure Modes and Effects Criticality Analysis) procedure, all the steps for
FMEA are performed. In addition, eriticality analysis is also performed. Criticality analysis
is done by combining the occurrence of failure modes and the determination of the impact of
a failure mode on the reliability of the system. As discussed before, there exists the concept

of the criticality number which characterizes the failure effects on a system function using a




number of parameters which are often difficult to determine for real systems. In traditional

FMECA analyses, subjective assignments are made to the values of unknown probabilities.

In the FMEA literature {78, 79, 82], the criticality number is defined as:

Za*ﬁ*7*T*Ka*Ke

1=1
where,

)\ = Fraction of total failure rate attributable to each failure mode.

B = Conditional prob. that if failure mode occurs then the critical failure will occur.

~ = Generic failure rate for item (known).

i = Specified failure mode.

n = Total number of failure modes for component.

K, and K, are environmental failure rate modification factors and T is the operating
time.

The values of A, # and v are evaluated from the datab typically available from the field. If
such data are unavailable, the analyst provides the missing values based on experience. Thus,
a great deal of subjectivity is introduced in the determination of the criticality number. The
proposed tool can reduce such subjectivity by providing the 8 values for various components.
Since the tool simulates the failure modes and finds whether those failure modes are critical,

determination of 8 for a given failure mode becomes a deterministic computation, which can

be used for FMECA analysis.

4.7. Summary

This section charts the steps involved during the criticality detection phase. An overall

picture of this phase is presented in Figure 4.6. After defining which signals are to be traced
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by the tool, the user lets the simulation run. As the simulation progresses, the results are
continually stored for future comparison by the criticality detector. The sampling period
attribute helps the tool decide what results are to be stored, and when. The preferred
scenario would be that the simulator continues to work for the duration of the sampling
period, at the end of which it stops and stores the results. The same procedure is carried

out both for the faulty and the fault-free systems.

The results are stored in two logfiles. One logfile is used to store the result of the faulty
simulation, and the other for fault-free case. The format for such a file can be of the form

shown in Tables 4.2, 4.3.

Table 4.2. File Format for Fault-Free System Logfile
Time signal1l signal 2 signal 3 signal 445

10ns 2 3 1 .5
20ns 2.5 3.2 1 .5
30ns 2 3 1 .5
40ns 2 3 0 .9

Table 4.3. File Format for Faulty System Logfiles

Time signal1 signal 2 signal 3 signal 445

10ns 2 3.2 1.1 .5
20ns 2.5 3.2 1.0 4
30ns 2 3.2 1.1 .6
40ns 1 2.2 1.1 .5

As shown in the tables, the logfiles chart the progression of values on the specified nodes
as a function of the time. The values placed in the files are governed again by the attributes
the user specified for the criticality phase. For example, they might be RMS values or, as

shown in the tables, one of the columns might be a combination of signals rather than being
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just a single signal. These logfiles can be updated after each simulation cycle, and later
these values can be fed to the comparator which determines if and when the fault became
critical. If the tool is operating in one step mode (i-e., stopping after each simulation cycle
to determine whether the fault is critical or not), then as soon as the criticality is detected,
the fault can be flagged. As an example from above tables, at 40ns the sum of signals 4 and
5 1s 0.5 in the faulty circuit and 0.9 in the fault-free one. This might constitute a critical
error. Still the tool may go on to finish the total simulation and do all the comparisons at the
end, when it will find that first critical error occurred at 40ns. Alternatively, the simulator
may be set to abort at the first instance of the critical error (one step). In one step, the

comparison is carried out every simulation cycle.




5. BIT EVALUATION

The BIT evaluation tool will help the designer assess the efficacy of the BIT resources to
meet system requirement. This will be done by determining the number of critical faults
that the BIT detects. In Section 4.7, the concept of logfiles for storing the system response
under faulty and fault-free conditions was introduced. This concept can be extended to BIT

evaluation.

5.1. BIT Evaluation Approach

Since a complete VHDL model is input to the simulator, when the criticality detector detects
a critical fault, the proposed tool can pinpoint both the nature and the location of the fault
because the tool itself injected the fault. The objective of BIT assessment is to determine
whether the fault is detected by any of the BIT schemes being used. This task will be
performed by the BIT evaluation facility. After the simulation of each fault, the status of
all BIT points together with the internal simulation data is stored, and then checked to see
whether the BIT was able to detect the injected fault. So while simulation is in progress, an
extra logfile needs to be maintained. This logfile captures the changes in BIT points as the

critical errors are identified.

After a simulation pass concludes, or upon first detection of criticality of a fault, the
values of the error counters keeping track of the BIT monitoring points can be added to
one of two global counters. These two global counters will keep a cumulative tally of the
error counts for the faults deemed critical, and for those that are found to be non-critical.
After all of the target faults have been injected and simulated, the global counters can be
used to assess the candidate BIT schemes in terms of their “efficiency” in detecting the
faults deemed mission-critical. The non-critical faults have their own set of error counters

which may provide useful information to the designer about the testability of the design and




provide feedback as to where test-points may be placed for non-BIT tests. A logfile associated
with the BIT monitoring points might be of the type shown in Table 5.1. This file may be
constructed simultaneously with the other logfiles, which record the values of specified signal
points. When the signal values are written in those files, the simulator updates the status
of the BIT points. If any of the BIT points have a valid flag a 1 is kept in the corresponding
point in the array to depict that the BIT in that point has been able to detect the error.

Table 5.1. File Format for BIT Logfiles

BIT_POINT1 BIT_POINT2 BIT_POINT3 BIT_POINT4

Faultl | 1 0 0 0
Fault2 | O 1 0 1
Fault3 | O 1 0 0
Fault4 | 0 0 0 0

As can be seen from the table, all the faults except fault 4 are detectable at one or
more of the BIT points. This implies that the used BIT scheme is not sufficient to detect
all the errors due to the injected faults. However, it might be the case that the criticality
detector finds that fault 4 was not critical according to the user’s requirements. Then the
system depicted above detects all the mission-critical faults (if any of the other faults are
critical). Similarly, from the same table we see that if the fault set is limited to these 4 faults,
then BIT_POINT 3 is redundant, because it does not detect any of the injected faults, and
therefore it may be removed. Such tradeoffs can be explored after all the information has

been gleaned and formatted for the criticality detector (comparator).

At this point, it is assumed that the critical errors have been identified, and a log of
those errors has been kept during the simulation phase. While the simulation was being
performed, a record was kept indicating where the critical errors occurred and whether they
were detected by the BIT structures which were specified in the design. This can be thought

of keeping a table of critical errors which has three entries in it:




o The injected fault, which resulted in a critical error.

o The value of the critical error.

e The BIT resource that detected the error.

It is possible that no BIT resource was able to detect a critical error. In that case, a new
BIT resource has to be allocated if it is desired to detect all mission-critical failures (i.e., as

in the case of INEWS system).

It must be understood that the recommendation here is to intertwine this step with the
other phases because all the ground work for this phase is done during the simulation and
the criticality analysis phase. It is during the simulation that all the data are collected to be
collated afterwards. It is during the criticality analysis phase that the logfiles are generated.
These logfiles are the ones on which the BIT evaluation phase will act and generate the
measure of the efficacy of the BIT. It must be noted that, until now, only one measure of the
efficacy of the BIT has been discussed, namely its capability to detect all the mission-critical
resources. There can be other tradeoffs the designer might like the tool to evaluate. These

will also be discussed here.

The structure suggested is shown in Figure 5.1.

5.2. BIT Measures

The initial impetus for the development of BIT techniques was to reduce the testing difficul-
ties encountered during component production screening. As designs become more complex,
with high logic to I/O ratios, the economic benefits of self-test become accentuated at both
the chip and system levels. Although system-level, built-in self-test appears to be a promis-
ing solution to chip testing and system diagnosis problems, it is not without its drawbacks.

Four primary disadvantages include:
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Figure 5.1. The BIT Evaluation Tool




1. Additional I/O pins and hardware overhead required.

2. Decreased reliability may be possible due to increased number of components in the

design.

3. Negative performance impact due to additional circuitry (i.e., path delays through

BIST components).

4. Additional design time and cost.

An obvious system design goal is to minimize the negative impact of BIST while max-
imizing its performance benefits. Traditionally, BIST approaches are evaluated with strict
regards to the additional area overhead required to achieve a specified level of fault cover-
age. Because low area overhead is naturally preferred, the use of complex BIST techniques is
generally restricted due to area minimization concerns. Since built-in self-testing approaches
are being developed for the system level, this suggests the use of system-level performance
metrics, in addition to the simple area overhead and fault coverage measures. The empha-
sis must be to have performance measures which capture the effects of BIST strategies on
both system performance and reliability. By assessing the composite BIST enhanced system,

optimization of the tradeoffs involved in a system design can be performed.

Test time is simply the time required to apply test patterns to a device under test.
For general systems, test time will be a function of several parameters including: number of
test patterns (test length), system complexity, and system test application frequency. Fault
coverage refers to the number of faults detected compared to the number of faults assumed.
The dependence of fault coverage on test length for random [56] and pseudorandom patterns

[56,57] has been explored in the literature, using both heuristic and algorithmic methods.

Area overhead is a measure of the hardware cost of a BIST scheme. The BIST hardware

overhead is generally expressed as a percentage. For an integrated circuit, the area overhead




is the percentage of silicon area occupied by the BIST circuitry compared to the total die
area. Since device yield decrease with increasing die area, a small percentage overhead is

preferable.

Measures appropriate for the evaluation of fault-tolerant systems include reliability, per-
formance or reward, area utilization and cumulative reward. The reliability R(t) of a
system is defined as: “the conditional probability that the system has survived the interval
[0,t], given that it was operational at time t=0.” This metric reflects the operational or
mission lifetime of a system, and is inherently a function of the reliabilities of the system’s
components and their interconnect. Another performance measure of a system is what is
referred to as reward, as in [80]. The definition of this metric is not unique; it is generally
chosen to be the quantity that most adequately describes the performance of the system. For
example, reward for a multiprocessor system may be chosen to be its computation capacity

(e.g, instructions per second) as defined in [58].

Area utilization [59] accounts for a